Anisotropic TGO rumpling in EB-PVD thermal barrier coatings under in-phase thermomechanical loading
نویسندگان
چکیده
منابع مشابه
An analytical model of rumpling in thermal barrier coatings
Multilayer thermal barrier coatings (TBCs) deposited on superalloy turbine blades provide protection from combustion temperatures in excess of 1500 1C. One of the dominant failure modes comprises cracking from undulation growth, or rumpling, of the highly compressed oxide layer that grows between the ceramic top coat and the intermetallic bond coat. In this paper, a mechanistic model providing ...
متن کاملResidual Stresses of Eb-pvd Thermal Barrier Coatings Exposed to High Temperature
The substrate material was nickel-based superalloy (In738LC), and CoNiCrAlY was pressureless plasma-sprayed on the substrate as the bond coating. As the top coating, zirconia with 4 mol% yttria was electron beam-physical vapor deposited (EB-PVD) on the rotating substrate. The rotation speeds in the EB-PVD process were 5, 10 and 20rpm. The specimens were exposed to 1273K in air atmosphere for 20...
متن کاملErosion, Corrosion and Erosion-Corrosion of EB PVD Thermal Barrier Coatings
Electron beam (EB) physical vapour deposited (PVD) thermal barrier coatings (TBCs) have been used in gas turbine engines for a number of years. The primary mode of failure is attributed to oxidation of the bondcoat and growth of the thermally grown oxide (TGO), the alumina scale that forms on the bondcoat and to which the ceramic top coat adheres. Once the TGO reaches a critical thickness the T...
متن کاملInfluence of Cyclic Thermal Loading on Fatigue Behavior of Thermal Barrier Coatings
Thermally insulating ceramic coatings also known as thermal barrier coatings (TBCs) have been essential technologies to improve the performance and efficiency of advanced gas turbines in service at extremely high temperatures. The damage mechanisms of air-plasma sprayed YSZ thermal barrier coatings (TBC) with various microstructures were studied by microscopic techniques after thermal cycling. ...
متن کاملFailure Mechanisms Investigation in Thermal Barrier Coatings under Isothermal and Non-sothermal Fatigue Loadings using Design of Experiments
In this article, failure and fracture mechanisms in an aluminum alloy (which has been used in diesel internal combustion engines), with and without ceramic thermal barrier coatings, have been investigated under isothermal and non-isothermal fatigue loadings. In this research, the base material is an aluminum-silicon-magnesium alloy and the thermal barrier coating includes a metallic bond coat l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Materialia
سال: 2011
ISSN: 1359-6454
DOI: 10.1016/j.actamat.2011.01.004